CrCO Photodissociation in Cr(CO)6: Reassessment of the Role of Ligand-Field Excited States in the Photochemical Dissociation of MetalLigand Bonds

نویسندگان

  • C. Pollak
  • A. Rosa
  • E. J. Baerends
چکیده

Density functional calculations have been performed on the excited states of Cr(CO)6. In contrast to the generally accepted assignment of the spectrum by Gray and Beach1,2 but in agreement with recent CASSCF/CASPT2 calculations by Pierloot et al.3 we find the low-intensity absorption at the low-energy side of the first charge-transfer (CT) band not to be due to ligand-field (LF) excited states, but to symmetry forbidden CT excitations. In Cr(CO)6 as in other d6 metal-carbonyl complexes,4-6 the LF states are at high energy. The calculations show that two states arising from the low-energy CT configuration have dissociative potential energy surfaces, in agreement with the experimentally observed photodissociation of the Cr-CO bond upon low-energy absorption. The photodissociation is therefore occurring from CT and not from LF states. This leads to a reassessment of the role of LF states in metal-ligand photodissociation: it is not necessary to excite to LF states in order to induce photodissociation of ligands, and such dissociation, when observed, does not prove that the excitation was to a LF state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength-independent ultrafast dynamics and coherent oscillation of a metal–carbon stretch vibration in photodissociation of Cr(CO)6 in the region of 270–345 nm

In the group-6 metal hexacarbonyls a number of metal-to-ligand charge-transfer (MLCT) and ligand-field (LF or d ! d) states can be excited in the near UV. The latter are repulsive. In equilibrium geometry, most of them are higher than the MLCT states. We probed the dynamics of photodissociation of M(CO)6 ! M(CO)5 + CO (M = Cr; some data also for M = Mo) with improved time resolution (10– 40 fs)...

متن کامل

The electron density analysis of Cr(CO)3L complexes (L=benzene and graphyne)

h6-benzne, h6-garphyne) was studied with MPW1PW91 quantum chemical computations. Quantumtheory of atoms in molecules (QTAIM) was applied to elucidate these complexes Cr-CO bonds. Theellipticity (e) and h values of the Cr-CO bonds were calculated. The amount of pp-dp back-donation ofCr-CO bonds were illustrated by calculation of the magnitude of the quadrupole polarization of c...

متن کامل

The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study

In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...

متن کامل

Photolytic properties of cobalamins: a theoretical perspective.

This Perspective Article highlights recent theoretical developments, and summarizes the current understanding of the photolytic properties of cobalamins from a computational point of view. The primary focus is on two alkyl cobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), as well as two non-alkyl cobalamins, cyanocobalamin (CNCbl) and hydroxocobalamin (HOCbl). Photolysis of al...

متن کامل

Photophysical and photochemical trends in tricarbonyl rhenium(I) N-heterocyclic carbene complexes.

A family of tricarbonyl Re(I) complexes of the formulation fac-[Re(CO)3(NHC)L] has been synthesized and characterized, both spectroscopically and structurally. The NHC ligand represents a bidentate N-heterocyclic carbene species where the central imidazole ring is substituted at the N3 atom by a butyl, a phenyl, or a mesityl group and substituted at the N1 atom by a pyridyl, a pyrimidyl, or a q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997